If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-18x+1=0
a = 10; b = -18; c = +1;
Δ = b2-4ac
Δ = -182-4·10·1
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{71}}{2*10}=\frac{18-2\sqrt{71}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{71}}{2*10}=\frac{18+2\sqrt{71}}{20} $
| 3/2b+11/6b=35/3 | | 5y+8y=0 | | 6p+10.868=6.33p-6.1+2.7p | | 2x^-3=128x^-5 | | 2x^-3=128x-5 | | 2x-3/5+x+3/4=2x+3/5 | | 6y+y=20 | | 6y+y=30 | | 23-4p=17 | | 6+y=y | | X=40/100+42+x= | | 2x-3/5+x+3/4=2x+3/4 | | 6=-3(x+4 | | 4y+y=24 | | 3(x+17)=6(5+x) | | 6-5+2x+7x-28=3-6x | | 7x-42=26 | | 10=((1-y)*9.5)+(y*13) | | 6(3w+7)/4=3 | | 2(v-2)=9v+3 | | 54=2*3^n | | 48=3*2^n | | 20=2^n*5 | | 32=2^n | | 4x-10-5x=8x+3x+2 | | 3.50x=$294 | | -q÷8=-2 | | 5*x=216 | | 3t^2-7t+3=0 | | 4x/3=11 | | x5-13x3+36x=0 | | X^3+x+5=41 |